Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis
نویسندگان
چکیده
Changes in seawater carbonate chemistry that accompany ongoing ocean acidification have been found to affect calcification processes in many marine invertebrates. In contrast to the response of most invertebrates, calcification rates increase in the cephalopod Sepia officinalis during long-term exposure to elevated seawater pCO2. The present trial investigated structural changes in the cuttlebones of S. officinalis calcified during 6 weeks of exposure to 615 Pa CO2. Cuttlebone mass increased sevenfold over the course of the growth trail, reaching a mean value of 0.71 ± 0.15 g. Depending on cuttlefish size (mantle lengths 44–56 mm), cuttlebones of CO2-incubated individuals accreted 22–55% more CaCO3 compared to controls at 64 Pa CO2. However, the height of the CO2exposed cuttlebones was reduced. A decrease in spacing of the cuttlebone lamellae, from 384 ± 26 to 195 ± 38 lm, accounted for the height reduction The greater CaCO3 content of the CO2-incubated cuttlebones can be attributed to an increase in thickness of the lamellar and pillar walls. Particularly, pillar thickness increased from 2.6 ± 0.6 to 4.9 ± 2.2 lm. Interestingly, the incorporation of non-acidsoluble organic matrix (chitin) in the cuttlebones of CO2exposed individuals was reduced by 30% on average. The apparent robustness of calcification processes in S. officinalis, and other powerful ion regulators such as decapod cructaceans, during exposure to elevated pCO2 is predicated to be closely connected to the increased extracellular [HCO3 ] maintained by these organisms to compensate extracellular pH. The potential negative impact of increased calcification in the cuttlebone of S. officinalis is discussed with regard to its function as a lightweight and highly porous buoyancy regulation device. Further studies working with lower seawater pCO2 values are necessary to evaluate if the observed phenomenon is of ecological relevance.
منابع مشابه
Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2
Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures o...
متن کاملOcean acidification and temperature rise: effects on calcification during early development of the cuttlefish Sepia officinalis
This study investigated the effects of seawater pH (i.e. 8.10, 7.85 and 7.60) and temperature (16 and 19°C) on (i) the abiotic conditions in the fluid surrounding the embryo (viz. the perivitelline fluid), (ii) growth, development and (iii) cuttlebone calcification of embryonic and juvenile stages of the cephalopod Sepia officinalis. Egg swelling increased in response to acidification or warmin...
متن کاملBioaccumulation of PCBs in the cuttlefish Sepia officinalis from seawater, sediment and food pathways.
The cuttlefish Sepia officinalis was selected as a model cephalopod to study PCB bioaccumulation via seawater, sediments and food. Newly hatched, juvenile cuttlefish were exposed for 17 days to environmentally realistic concentrations of (14)C-labeled 2,2',4,4',5,5'-hexachlorobiphenyl (PCB#153) (18 ng PCB l(-1) seawater; 30 ng PCB g(-1) dry wt sediments; Artemia salina exposed to 18 ng PCB l(-1...
متن کاملElevated seawater PCO₂ differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalis.
The specific transporters involved in maintenance of blood pH homeostasis in cephalopod molluscs have not been identified to date. Using in situ hybridization and immunohistochemical methods, we demonstrate that Na(+)/K(+)-ATPase (soNKA), a V-type H(+)-ATPase (soV-HA), and Na(+)/HCO(3)(-) cotransporter (soNBC) are colocalized in NKA-rich cells in the gills of Sepia officinalis. mRNA expression ...
متن کاملAbiotic conditions in cephalopod (Sepia officinalis) eggs: embryonic development at low pH and high pCO2
Low pO2 values have been measured in the perivitelline fluids (PVF) of marine animal eggs on several occasions, especially towards the end of development, when embryonic oxygen consumption is at its peak and the egg case acts as a massive barrier to diffusion. Several authors have therefore suggested that oxygen availability is the key factor leading to hatching. However, there have been no mea...
متن کامل